Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose.
نویسندگان
چکیده
Bar-headed geese (Anser indicus) fly at up to 9,000 m elevation during their migration over the Himalayas, sustaining high metabolic rates in the severe hypoxia at these altitudes. We investigated the evolution of cardiac energy metabolism and O(2) transport in this species to better understand the molecular and physiological mechanisms of high-altitude adaptation. Compared with low-altitude geese (pink-footed geese and barnacle geese), bar-headed geese had larger lungs and higher capillary densities in the left ventricle of the heart, both of which should improve O(2) diffusion during hypoxia. Although myoglobin abundance and the activities of many metabolic enzymes (carnitine palmitoyltransferase, citrate synthase, 3-hydroxyacyl-coA dehydrogenase, lactate dehydrogenase, and pyruvate kinase) showed only minor variation between species, bar-headed geese had a striking alteration in the kinetics of cytochrome c oxidase (COX), the heteromeric enzyme that catalyzes O(2) reduction in oxidative phosphorylation. This was reflected by a lower maximum catalytic activity and a higher affinity for reduced cytochrome c. There were small differences between species in messenger RNA and protein expression of COX subunits 3 and 4, but these were inconsistent with the divergence in enzyme kinetics. However, the COX3 gene of bar-headed geese contained a nonsynonymous substitution at a site that is otherwise conserved across vertebrates and resulted in a major functional change of amino acid class (Trp-116 → Arg). This mutation was predicted by structural modeling to alter the interaction between COX3 and COX1. Adaptations in mitochondrial enzyme kinetics and O(2) transport capacity may therefore contribute to the exceptional ability of bar-headed geese to fly high.
منابع مشابه
Phylogenetic and structural analysis of the HbA (a/b) and HbD (a/b) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: Bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera)
Two species of waterfowl living at high altitude provide a prominent example of parallel adaptation at the molecular level. The bar-headed goose (Anser indicus) breeds at high elevations in central Asia and migrates across the Himalayas, where the partial pressure of oxygen (O2) is one-third of sea level. In South America, the distantly related Andean goose (Chloephaga melanoptera) is endemic t...
متن کاملEvolution of muscle phenotype for extreme high altitude flight in the bar-headed goose.
Bar-headed geese migrate over the Himalayas at up to 9000 m elevation, but it is unclear how they sustain the high metabolic rates needed for flight in the severe hypoxia at these altitudes. To better understand the basis for this physiological feat, we compared the flight muscle phenotype of bar-headed geese with that of low altitude birds (barnacle geese, pink-footed geese, greylag geese and ...
متن کاملControl of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds.
Bar-headed geese fly at altitudes of up to 9,000 m on their biannual migration over the Himalayas. To determine whether the flight muscle of this species has evolved to facilitate exercise at high altitude, we compared the respiratory properties of permeabilized muscle fibers from bar-headed geese and several low-altitude waterfowl species. Respiratory capacities were assessed for maximal ADP s...
متن کاملControl of breathing and adaptation to high altitude in the bar-headed goose.
The bar-headed goose flies over the Himalayan mountains on its migratory route between South and Central Asia, reaching altitudes of up to 9,000 m. We compared control of breathing in this species with that of low-altitude waterfowl by exposing birds to step decreases in inspired O(2) under both poikilocapnic and isocapnic conditions. Bar-headed geese breathed substantially more than both greyl...
متن کاملHigh thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.
The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2011